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Abstract 

Carbohydrates are abundant biomolecules, with a strong tendency to form supramolecular networks. 
A host of carbohydrate-based nanomaterials have been exploited for biomedical applications. These 
structures are based on simple mono- or disaccharides, as well as on complex, polymeric systems. 
Chemical modifications serve to tune the shapes and properties of these materials. In particular, 
carbohydrate-based nanoparticles and nanogels were used for drug delivery, imaging, and tissue 
engineering applications. Due to the reversible nature of the assembly, often based on a combination 
of hydrogen bonding and hydrophobic interactions, carbohydrate-based materials are valuable 
substrates for the creations of responsive systems. Herein, we review the current research on 
carbohydrate-based nanomaterials, with a particular focus on carbohydrate assembly. We will discuss 
how these systems are formed and how their properties are tuned. Particular emphasis will be placed 
on the use of carbohydrates for biomedical applications. 

Introduction 

Carbohydrates comprise more than 80% of biomass, making them the most abundant class of 
biopolymers on earth. They mainly serve energy storage and structural functions. Recently, the 
regulatory role of carbohydrates in several biological processes has become evident (A. Varki; R. 
Cummings; J. Esko; H. Freeze; P. Stanley; G. Hart;  P.H. Seeberger, 2017). Cell differentiation, 
proliferation and adhesion, inflammation and immune responses are connected to carbohydrate-
carbohydrate (CCIs) (Rojo, Morales, & Penadés, 2002) and carbohydrate-protein (CPIs) (Y. C. Lee & Lee, 
1995) interactions. These interactions are weak, often in the micro to millimolar range, so nature 
makes use of multiple weak interactions to circumvent this issue (multivalency). The concept of 
multivalency has been exploited by synthetic chemists in order to mimic nature (Fasting et al., 2012). 
Several nanostructures, coated with multiple copies of the same carbohydrate ligand, permitted to 
increase the CPI and CCI strength (Delbianco, Bharate, Varela-Aramburu, & Seeberger, 2016; Jiménez 
Blanco, Ortiz Mellet, & García Fernández, 2013). Enhanced water solubility and stability are also 
observed. Glycosylated scaffolds, such as polymers, nanoparticles, and surfaces, are potential drug 
delivery systems, vaccines, and therapeutics that have been reviewed extensively (Chabre & Roy, 2013; 
Delbianco et al., 2016; Kiessling & Grim, 2013; Marradi, Chiodo, García, & Penadés, 2013; Sansone & 
Casnati, 2013). The tendency of carbohydrates to form supramolecular networks, via a multitude of 
hydrogen bonds, guided the development of self-assembling systems (Delbianco et al., 2016).  

CCIs and CPIs are generally regulated by long complex polysaccharides. Nevertheless, for simplicity, 
most glycosylated-materials are based on a synthetic scaffold functionalized with multiple copies of 
simple mono- or oligosaccharides. Such molecules can be prepared by chemical synthesis and/or 
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enzymatic methods, obtaining well-defined structures (Kadokawa, 2011; Panza, Pistorio, Stine, & 
Demchenko, 2018; Pardo-Vargas, Delbianco, & Seeberger, 2018); unnatural structures are also 
accessible through chemical modifications. As an alternative to synthetic compounds, polysaccharides 
extracted from natural sources offer a valuable substrate for the formation of materials (Garcia-
Vaquero, Rajauria, O'Doherty, & Sweeney, 2017; Ruthes, Smiderle, & Iacomini, 2015). Their 
abundance, biocompatibility, and tendency to form stable supramolecular networks are extremely 
appealing features for the creation of nanomaterials, like nanoparticles or gels (Figure 1). Additionally, 
these polymers could be easily functionalized to improve solubility, stability, encapsulation and 
responsiveness (Cumpstey, 2013; Fox, Li, Xu, & Edgar, 2011; Jedvert & Heinze, 2017). Both natural and 
chemically modified structures found several applications in imaging (Swierczewska, Han, Kim, Park, & 
Lee, 2016; Wondraczek, Kotiaho, Fardim, & Heinze, 2011), drug delivery (Gopinath, Saravanan, Al-
Maleki, Ramesh, & Vadivelu, 2018; Z. Liu, Jiao, Wang, Zhou, & Zhang, 2008), and tissue engineering (J. 
Hu, Seeberger, & Yin, 2016). Nevertheless, extracted polysaccharides exist as polydisperse samples 
with multiple lengths and branching, making the analysis, reproducibility and quality control of such 
materials very difficult. Due to the single chain flexibility, a detailed 3D investigation, as well as a 
defined structure-function correlation, is still lacking. In addition, chemical modifications, that serve to 
tune the polysaccharides properties, suffer from low regioselectivity, increasing the sample 
polydispersity even further.  

Despite the challenges, carbohydrates remain an exciting substrate for biomaterial applications, due 
to their biological relevance and tendency to form supramolecular networks. Here, we review the 
recent progress in the field of carbohydrate-based nanomaterials. We will focus on supramolecular 
carbohydrate-based assemblies, in which the supramolecular aggregation is guided and controlled by 
the carbohydrate part (glycomaterials). Pre-assembled materials, further functionalized via 
glycosylation (glycosylated materials), will not be discussed in this review. We will start from simple 
architectures based on carbohydrate monomers, continuing to more complex polysaccharides-based 
materials. Particular focus will be given to the assemblies used for biomedical applications.   

Figure 1: Schematic representation of the different classes of carbohydrates used to form 
nanomaterials for biomedical applications. 
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OLIGOSACCHARIDES 

Monomers and Dimers 

Mono- and oligosaccharides have been modified extensively to give glycoamphiphiles and generate 
diverse morphologies like micelles, vesicles, and fibers (Figure 2). Non-covalent interactions such as 
hydrogen bonds, hydrophobic, and metal-ligand interactions promote the formation of the assembly. 
Moreover, several examples of dissociation of the assembly in response to external stimuli, such as 
heat, light, and ultrasound, have been reported. This behavior is particularly important for drug 
delivery systems, where the responsive release can be exploited to minimize drug side effects. As an 
example, lactose-conjugated dendrimers with a photo-responsive hydrophobic part can selectively 
release doxorubicin in cancel cells, upon NIR or UV irradiation (L. Sun, Ma, Dong, Zhu, & Zhu, 2012). In 
addition, the amphiphilic nature of most sugar materials permits the encapsulation of both hydrophilic 
and hydrophobic molecules. Water-soluble compounds like enzymes, plasmid DNA, and genes as well 
as water-insoluble dyes can be delivered upon encapsulation into sugar micelles and vesicles (1-3) 
(Gour, Purohit, Verma, Puri, & Ganesh, 2009; Ryu, Lee, Lim, & Lee, 2007; Salim et al., 2015)  .  

Figure 2: Chemical structures and supramolecular assembly of monosaccharides amphiphiles. 

An important role of mono- and oligosaccharides is cell recognition (Lis & Sharon, 1998). This process 
is based on the interaction between carbohydrate binding proteins (i.e. lectins) and carbohydrates on 
the cell surface and is often involved in the primary stage of pathogen infection. Sugar-assemblies have 
been exploited to target lectins and inhibit bacterial infections (2-4) (B. S. Kim, Yang, Ryu, Yoo, & Lee, 
2005; D. W. Lee, Kim, Park, Huang, & Lee, 2012; Lim et al., 2007; Percec et al., 2013; Ryu et al., 2007; 
S. Zhang et al., 2015; S. Zhang et al., 2014). Structure and concentration of the sugar amphiphile
regulates the morphology of the supramolecular complexes. At the same time, the density of the
exposed sugars influence the cell recognition ability (Y. Liu, Zhang, et al., 2016). Glycoclusters based
on metal-ligand interactions offer an interesting alternative. Pipyridyl-glycoclusters functionalized with 
the Tn-antigen (α-GalNAc-OR) were used for the formation of  copper(II) complexes with enhanced
binding to Vicia villo lectin (R. Roy & Kim, 2003). Similarly, a catechol-functionalized iron(III)
glycodendrimer better targeted E. coli ORN78 and was used as an iron delivery carrier (Yadav & Kikkeri, 
2012). Saccharide-coated M12L24 complexes based on Pd(II) (Y. Liu, Zhang, et al., 2016) showed
potential in Alzheimer diagnosis (Sato et al., 2015; Yan et al., 2017). The use of sugar nanostructures
for immunomodulation was first reported in 2014 as the assembled nanofibrils encapsulate antigens
and interact with human antibodies. In contrast to monomeric L-rhamnose, which increased antibody
response, the nanofibrils base on 5 reduced the antibody response to the antigen phycoerythrin,
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suggesting that this system may be a synthetic immunomodulatory material (Zhao et al., 2014). 
Recently, glycopeptide nanostructures have been proposed for regenerative therapy (S. S. Lee, Fyrner, 
et al., 2017). Nanofibers composed of a glycopeptide bearing a trisulfated monosaccharide can mimic 
heparan sulfate, a polysaccharide that binds growth factors that are in turn responsible for cell 
proliferation and differentiation related with bone formation.  

Modified mono- and disaccharides have been extensively used as low molecular weight gelators 
(LMWGs). Most sugar gelators are conjugated to hydrophobic moieties (6,7,8), such as aliphatic chains 
or aromatic groups (A. Chen, Okafor, Garcia, & Wang, 2018; Clemente, Romero, Serrano, Fitremann, 
& Oriol, 2012; Guan et al., 2016; Krishnan, Raghu, Mukherjee, & Sureshan, 2016; Mathiselvam, 
Loganathan, & Varghese, 2013; Mitra, Sarkar, & Mukhopadhyay, 2017; Pathak, Halder, Dhara, & Yadav, 
2017). These sugar-derived supramolecular structures can encapsulate hydrophobic drugs to increase 
drug solubility and serve as scaffolds for biomedical applications. Moreover, 3D gel matrixes from sugar 
gelators were exploited as a tissue engineering scaffold and for cell proliferation (Ustun Yaylaci et al., 
2016). Highly elastic hydrogels, suitable for adhesion and proliferation of isolated stem cells, were 
obtained from a glucosyl-nucleoside bola-amphiphiles (Latxague et al., 2015). Responsive gels, that 
form or degrade upon an external stimulus, were developed as well. Gelation of a phosphate 
containing carbohydrate amphiphile 9 induced by alkaline phosphatase produced by osteosarcoma 
cells can suppress metastasis by blocking metabolite exchange between cells (Pires et al., 2015). A 
glucose-conjugated prodrug assembled into a thermo-responsive gel and was employed as a 
biocompatible drug with reduced inflammatory effect (Xiong et al., 2018).        

Supramolecular structures formed from mono- and oligosaccharides proved to be important 
substrates for biomedical applications, such as bacterial infection inhibition and bone regeneration. 
The majority of these systems require several modifications with bulky proteins or lipid units. 
Moreover, most studies were limited to the use of mono- and disaccharides. With the development of 
synthetic techniques that allow for quick access to longer oligosaccharides, new glycomaterials, 
requiring less functionalization, can be envisioned (Hahm et al., 2017; Panza et al., 2018; Pardo-Vargas 
et al., 2018; Wen et al., 2018).  

Cyclodextrins 

Cyclodextrins (CDs) are cyclic oligosaccharides constituted of glucopyranose units linked α-(1,4), 
commonly produced during the degradation of starch. The most common CDs are α-, β-, and γ-CDs, 
consisting of six, seven, and eight glucose units. Because of their cavity, CDs can form unique inclusion 
complexes with specific molecules, and further assemble into supramolecular structures (Crini, 2014). 
Hence, they are potential structural units to build nanomaterials as discussed in several excellent 
reviews (Bellia et al., 2009; Delbianco et al., 2016; Q. D. Hu, Tang, & Chu, 2014; Martinez, Ortiz Mellet, 
& Garcia Fernandez, 2013; Schmidt & Barner-Kowollik, 2017; Wenz, 1994). Here, we describe recent 
work related to structural properties and biomedical applications of nanomaterials assembled from 
CD structures. 

CDs usually assemble in three different packing patterns: cage, channel, and layer type superstructures 
(Figure 3) (Harata, 1998). In the cage pattern, the cavity is sealed by another CD. In the channel pattern, 
the CD molecules arrange regularly through hydrogen bonds to form linear structures, so the cavities 
stack together to form the channel. The layer type CDs are arranged in parallel, however, the cavities 
are shielded due to a half-molecule shift between the layers. These systems can further assemble into 
a variety of geometries, such as particles and fibers (CD-based materials). 
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CD-based materials have been applied in the food and pharmaceutical industries since the 1980s (Crini, 
2014) and show great potential for biomedical applications. Different methods to prepare CD-based 
materials in aqueous environment exist (González-Gaitano et al., 2002; Shigemitsu & Kida, 2018; 
Szente, Szejtli, & Kis, 1998; A. Wu, Shen, & He, 2006a, 2006b). CDs and their inclusion complex 
nanofibers were prepared by electrospinning (Celebioglu & Uyar, 2012, 2013a, 2013b; Kayaci & Uyar, 
2012; Uyar, Balan, Toppare, & Besenbacher, 2009; Uyar & Besenbacher, 2009; Uyar, Nur, Hacaloglu, & 
Besenbacher, 2009). Guest-free channels can be prepared by a solvent switch from α- and γ-CD (Rusa 
et al., 2002; Uyar, Hunt, Gracz, & Tonelli, 2006), whereas cubic crystals can be obtained from γ-CD 
(Kida, Marui, Miyawaki, Kato, & Akashi, 2009; Marui, Kida, & Akashi, 2009). CD drug delivery systems, 
allow for encapsulation of small drug molecules as well as large biomolecules (Challa, Ahuja, Ali, & 
Khar, 2005; Davis & Brewster, 2004; Del Valle, 2004; Rajewski & Stella, 1996; Stella & Rajewski, 1997). 
The antidepressants, dothiepin (DOT) and doxepin (DOX) formed 1:2 inclusion nanostructures with α-
and β-CDs and assemble into sphere and agglomerated structures (Rajendiran, Sankaranarayanan, & 
Saravanan, 2014). More complicated systems, involving the ternary complex “Guest 2/(Guest 1/γ-CD)” 
permitted to load two different drugs at the same time; the first guest is located in the CD cavity, and 
the second guest is incorporated into the intermolecular spaces between CD channels (N. Liu, Higashi, 
Ueda, & Moribe, 2017).  
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Figure 3: CD packing patterns, common CD modifications, and examples of CD systems for drug 
delivery applications. 

Chemical modifications greatly expand pharmaceutical applications of CDs. Amphiphilic CDs engage in 
stronger interactions with hydrophobic drugs and can self-assemble into a variety of nanostructures, 
in aqueous systems. The hydrophobic part of these assemblies enters into strong interactions with 
biological membranes, thus increasing cellular uptake (Varan, Varan, Erdoğar, Hıncal, & Bilensoy, 2017). 
α-CD were modified at the 6 position with diffident kinds of fluorinated and hydrocarbonated 
amphiphilic chains to encapsulate 4-methoxy-5-isopropyl-5, 6, 7, 8-tetrahydroindeno [1, 2-b] indole-9, 
10-dione (THN7), an inhibitor of casein kinase 2, and form nanoparticles of around 100 nm diameter 
size (Figure 3)(Nacereddine et al., 2018).  
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2-Hydroxypropyl cyclodextrins (HP-CDs) are widely used for drug delivery. Upon random methylation, 
β-CD and HP-β-CD served as carriers for drug nebulization (Evrard et al., 2004). An aqueous cyclosporin 
A eye drop was developed based on both natural CDs and HP-CDs (Jóhannsdóttir, Jansook, Stefánsson, 
& Loftsson, 2015). HP-β-CD/budesonide microparticles were spray-dried to treat lung inflammation 
(Dufour et al., 2015). The inclusion complex between triclabendazole (TCBZ) and HP-β-CD or methyl-
β-cyclodextrin (Me-β-CD) can form different superstructures, that are highly soluble for drug delivery 
applications (Figure 3) (Real, Leonardi, Williams, Repka, & Salomon, 2018). The advantage of HP-CDs 
was illustrated for the CD/Griseofulvin (GF) complex. Although β-CDs and Me-β-CDs were as effective 
in stabilizing the drug suspensions and reducing the size of drug nanoparticles, HP-β-CD showed the 
highest efficacy (Meng, Yang, Keyvan, Michniak-Kohn, & Mitra, 2012).  

Hydrophilic CD derivatives, bearing charged functional groups, were developed as an alternative to 
amphiphilic CDs. Non-ionic amphiphilic CD and polycationic amphiphilic CD functionalized with amino 
groups were used as nanocarrier for paclitaxel. The strong positive charge helped to increase the 
loading capacity of the nanoparticles (Varan, Benito, Mellet, & Bilensoy, 2017). Moreover, charged CDs 
are interesting substrates to prepare nanosponges, permitting high loading and better delivery for a 
wide variety of drugs (Selvamuthukumar, Anandam, Krishnamoorthy, & Rajappan, 2012). The 
negatively charged sulfo-butylether-β-cyclodextrin (SBE-β-CD) was crosslinked by epichlorohydrine 
and form a nanosponge, used as deliver system for repaglinide (Olteanu, Aramă, Radu, Mihăescu, & 
Monciu, 2014). Carbonate and carboxylate functionalized cyclodextrins also assembled into 
nanosponges for acyclovir encapsulation (Lembo et al., 2013). Moreover, a glutathione (GSH) 
responsive nanosponge was developed by crosslinking β-CD, pyromellitic dianhydride and 2-
hydroxyethyl disulfide, with potential for doxorubicin encapsulation. The drug release profile was 
accelerated in the presence of increasing amounts of glutathione (GSH) (Trotta et al., 2016).  

New modifications are studied to produce novel CD materials with improved performance. 
Nanocarriers formed by epichlorohydrine crosslinked CD polymers can significantly enhance the 
solubility of sorafenib in water (Giglio et al., 2018). Multi-responsive CD vesicles, consisting of (N, N’-
bis(ferrocenylmethylene)-diaminohexane) and (γ-hydroxybutyric-β-cyclodextrin, γ-HB-β-CD), showed 
redox-responsive behavior. The same system is pH responsive and reacts to the presence of metal ions 
such as Cu2+ (Huacheng Zhang et al., 2010). Dendrimers based on β-CD and ethylenediamine 
accommodate naproxen and naltrexone in gaps of the dendritic structure as well as in the hydrophobic 
cavities of the CDs (Martinez et al., 2013). A similar β-CD dendrimer provided a controlled drug delivery 
system for methotrexate (MTX) for cancer treatment (Figure 3) (Toomari, Namazi, & Akbar, 2015). 
Amphiphilic β-CD nanoparticles were developed as nanocarriers for doxorubicin (DOX). The assemblies 
were further functionalized with mannose, to facilitate the cancer cell targeted drug delivery. The 
system showed good tumor growth inhibition in the murine xenograft tumor models (Ye et al., 2016) 

Several nanomaterials were prepared from different CD units and applied to the development of drug 
delivery systems, nevertheless, structure-function relationship have yet to be established. A better 
understanding of the relationships between the chemical modification, preparation, and structural 
property of CD materials, will help the design and creation of new CD nanostructures for the specific 
needs.      
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POLYSACCHARIDES  

Neutral polysaccharides 

Cellulose 

Cellulose is the most abundant biopolymer on earth and a major structural component in plants, algae, 
fungi, and bacteria (Klemm, Heublein, Fink, & Bohn, 2005). D-glycopyranose monomers are connected 
to each other with β-(1,4)-glycosidic linkage forming elementary fibrils (protofibrils). Cellulose 
microfibrils arise from a large number of inter- and intramolecular interactions of the protofibrils, 
ensuring high mechanical strength, durability, and water-insolubility. These features allow for the use 
of cellulose in the paper, textile, filter, and building material industry (Moon, Martini, Nairn, Simonsen, 
& Youngblood, 2011). Recently, nanocellulose (NC) has gained attention as material (Thomas et al., 
2018). Three main classes of NC exist: cellulose nanocrystals (CNCs), nanofibrillated cellulose (NFC), 
and bacterial nanocellulose (BNC). NC can be extracted from various biosources and it is easily 
chemically or physically modified (Kargarzadeh et al., 2018). Like other nanomaterials, NC shows a high 
surface to volume ratio and improved solubility compared to natural cellulose. Here, we will focus on 
materials obtained by self-assembly of substituted cellulose, since NC has been extensively reviewed 
(Amalraj, Gopi, Thomas, & Haponiuk, 2018; Jorfi & Foster, 2015; Picheth et al., 2017; Seabra, 
Bernardes, Fávaro, Paula, & Durán, 2017).   

The limited water solubility of cellulose is a critical obstacle for biomedical applications. For a better 
usage of cellulose in drug delivery, wound healing, and tissue/regenerative engineering, structural 
modifications have been introduced to decrease inter- and intramolecular hydrogen bonding (D. Roy, 
Semsarilar, Guthrie, & Perrier, 2009). The cellulose backbone, rich in hydroxyl groups, can be esterified 
and etherified. Due to the poor solubility of cellulose in common solvents, ionic liquids, such as 1-n-
butyl-3-methylimidazolium chloride (BmimCl) and 1-n-alkyl-3-metylimidazolium chloride (AmimCl), 
are generally employed. Cellulose acetate (CA), ethylcellulose (EC), hydroxypropylcellulose (HPC), and 
carbohymethylcellulose (CMC) are the most common cellulose derivatives (Figure 4), with improved 
water solubility. Hydrophobic segments, like poly(L-lactic acid), have been grafted onto the cellulose 
backbone to give rise to amphiphilic copolymers (Dai & Si, 2017; Guo, Wang, Shu, Shen, & Sun, 2012).  

 

Figure 4: Chemical structure of cellulose and its most common derivatives. 

CA is the acetate ester of cellulose, obtained from the reaction of cellulose with acetic anhydride and 
acetic acid in the presence of sulfuric acid. The solubility of CA is influenced by the degree of 
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acetylation.(Fischer et al., 2008) Earlier studies on CA mainly focused on the formation of cellulose 
beads, resulting in a commercially available system for medical applications (Milovanovic et al., 2016). 
CA beads are prepared via oil-in-water emulsion/solvent evaporation, offering high mechanical 
strength, suitable for bone tissue engineering (Kumbar et al., 2011). Cellulose acetate phthalate (CAPh) 
successfully generated CAPh-dye beads by encapsulation, which were used as visually readable labels 
in lateral flow immunoassays (Schulze et al., 2016). Since the development of electrospinning for 
nanobiotechnology, improving drug encapsulation efficiency and easing fabrication (Samadian, 
Mobasheri, Hasanpour, & Majid, 2017), the recent research on CA focuses on electrospun fibers 
(Khoshnevisan et al., 2018; Sharaf & El-Naggar, 2018). Chlorohexidine-containing CA electrospun 
nanofibers showed antibacterial activity against oral pathogens, permitting a release of the drug over 
90 days (De Carvalho et al., 2017). Dexamethasone-loaded electrospun CA scaffolds provided a good 
environment for cell growing and proliferation, suggesting the possibility to reduce implant-associated 
acute inflammations and impede implant failure (Tsiapla et al., 2018). Functionalized stimuli-
responsive CA were also developed. A boronic acid ligand-functionalized CA nanofiber, which is able 
to selectively bind and release glycoproteins (e.g. ovalbumin) depending on the pH, was used in 
diagnostics (Dong et al., 2018).  

Short aliphatic moieties were used to functionalize the cellulose backbone to give EC, HPC, and other 
derivatives, that are readily soluble in common organic solvents. The hydrophobic modification allows 
for the self-assembly of the cellulose derivatives in aqueous solution and encapsulation of hydrophobic 
dyes (Xiaohui Wang, Guo, Li, Chen, & Sun, 2012). In addition, EC can form gels by the solvent-exchange 
method. Antimicrobial agents were encapsulated in such gels providing a simple syringe injectable 
drug for periodontitis (Phaechamud & Mahadlek, 2015). Atom transfer radical polymerization (ATRP) 
is the most widely used technique for further modification of cellulose derivatives (Kang, Liu, & Huang, 
2015; D. Roy et al., 2009). Generally, the cellulose hydroxyl groups are modified with 2-
bromoisobutyryl bromide to initiate the polymerization reaction. Light sensitive triblock copolymers 
were successfully obtained by ATRP of EC and spiropyran ether methacrylate (SPMA). The SPMA light 
responsive moieties permitted a wavelength dependent controlled drug release (B. Wang, Chen, Yang, 
Yang, & Liu, 2014).  An alternative system uses pendant disulfide linkages to form a HPC crosslinked 
structure with excellent colloidal stability and selective drug release behavior, in the presence of a 
reducing agent (Rahimian, Wen, & Oh, 2015).  

The introduction of negative charges onto the cellulose backbone, not only affects the supramolecular 
structure formation, but also the bioactivity of the resulting aggregates. CMC is the most common 
charged cellulose derivative, bearing negative carboxymethyl groups. The carboxylic groups make 
cellulose soluble in water and chemically reactive. Due to its negative nature, CMC can generate 
supramolecular structure with positive charged polymers or metals (Figure 5) (Agarwal et al., 2015; 
Barkhordari, Yadollahi, & Namazi, 2014; Upadhyaya, Singh, Agarwal, Pandey, et al., 2014). CMC and 
quaternary ammonium substituted cellulose formed a ampholytic hydrogel responsive to pH and salt 
concentration, which makes a good candidate for tissue engineering (Chang, He, Zhou, & Zhang, 2011). 
Similarly, a mixture of lysozyme (Ly), a globular positive charged protein, and CMC is a promising drug 
delivery carrier (Zhenshun Li, Wang, et al., 2017; K. Zhu et al., 2013). This system can incorporate 
quantum dots for cell imaging (Zhenshun Li et al., 2015). Hydroxyl groups of CMC and acid-
functionalized multi-walled carbon nanotube (MWCNT) generated a hybrid nanocomposite hydrogel 
via strong hydrogen bonding between the two components, leading to a sustained release of 
diclofenac sodium (Mandal, Das, Rameshbabu, Dhara, & Pal, 2016). Following the same idea, a 
CMC/graphene oxide (GO) hydrogel was obtained. This gel was converted into spherical beads by 
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addition of iron ions (Rasoulzadeh & Namazi, 2017). Even simple organic molecules,  like citric acid, 
can crosslink CMC and form hydrogels with enhanced mechanical properties, and suitable for topical 
chemotherapy (Capanema et al., 2018).  

 

Figure 5: Co-assembly of CMC to form nanomaterials.   

CMC has been modified in many ways to tune its properties for biomedical applications. Acetylated 
CMC improved drug coupling efficiency and colloidal stability (Hoang et al., 2015). Mucoadhesive 
properties were obtained by conjugation of L-cysteines to the CMC backbone (Laffleur & Messirek, 
2016). Tumor targeting was tackled with covalent conjugation of cancer drugs and folate ligands to 
CMC (Dai et al., 2015). β -CD grafted CMC gels showed more effective tetracyclin-loading efficiency as 
compare to normal CMC gel (Jeong et al., 2018). Insertion of the photo-active cinnamic acid hydrazide 
moieties into the oxidized dialdehyde CMC core generated an adjustable photo-crosslinked hydrogel 
with improved mechanical properties (Monier, Abdel-Latif, & Ji, 2016). Crosslinking performed by 
microwaved assisted radical transfer increased the hydrogel stability and improved the sustained drug 
release (Sood, Gupta, Agarwal, Dev, & Pathania, 2017). 

Dextran 

Dextran, a glucose homopolysaccharide based on an α-(1,6) backbone with α-(1,2), α-(1,3), or α-(1,4) 
side chains, is a highly water-soluble bacterial glycan with good biocompatibility and biodegradability 
with the tendency to form nanomaterials, and widely used in the pharmaceutical industry (Naessens, 
Cerdobbel, Soetaert, & Vandamme, 2005). Many reviews summarize the use of dextran for drug 
delivery and tissue engineering (Bisht & Maitra, 2009; Debele, Mekuria, & Tsai, 2016; Mehvar, 2000; 
Miao, Wang, Zeng, Liu, & Chen, 2018; Mizrahy & Peer, 2012; Mokhtarzadeh, Alibakhshi, Hejazi, Omidi, 
& Dolatabadi, 2016; G. Sun & Mao, 2012; Van Tomme & Hennink, 2007). We will focus on the recent 
advances on assemblies and nanostructures based on dextran and its chemical derivatives.  

Several dextran aggregates, of different size and shape, were produced and used for drug 
encapsulation. Microcapsules based on natural dextran with different molecular weight (10 kDa - 500 
kDa) were prepared by spray drying. The drug budesonide was co-fibred at different drug-to-dextran 
ratios, showing that a 1:10 drug-to-polymer ratio can successfully deliver the drug to the colon to treat 
acetic acid-induced colitis (Varshosaz et al., 2011). Hybrid dextran nanoparticles with core-shell 
structure were developed to carry zidovudine, an antiviral drug extensively used for combating the 
global pandemic-HIV/AIDS. The nanocomplex of zidovudine with dextran, stearic acid, and poly 
(ethylene glycol) was obtained through a double emulsion solvent evaporation method. Further tests 
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demonstrated the increased cellular internalization of the drug loaded nanoparticles, when compared 
with the free drug (Joshy et al., 2018).  

Chemical modifications permitted the introduction of functional groups that greatly extended the 
biomedical application of natural dextran (Figure 6). Acetalated dextran (Aca-DEX) 10, easily prepared 
from natural dextran, is one of the most commonly used derivatives (Bachelder, Pino, & Ainslie, 2016). 
A microparticulate-based delivery system prepared by electrospray. The recombinant protective 
antigen and the adjuvant were encapsulated in acetalated dextran particles, to provide a subunit 
anthrax vaccine (Gallovic et al., 2016). Depending on the degree and type of acetal modification, the 
degradation of Aca-DEX can be controlled. Microparticles with tunable degradation rates showed 
advantages compared to poly(lactic-co-glycolic acid) and iron oxide, two commonly used materials for 
immunotherapy (Broaders, Cohen, Beaudette, Bachelder, & Fréchet, 2009). Because of its instability 
at low pH conditions, acetalated dextran was used as acid-responsive biodegradable material. Aca-DEX 
particles were able to carry either hydrophobic or hydrophilic payloads and released them at mild 
acidic conditions (pH 5) (Bachelder, Beaudette, Broaders, Dashe, & Fréchet, 2008). Aca-DEX-based 
microparticles with different hydrolysis rates were used for gene delivery in phagocytic and non-
phagocytic cells (J. A. Cohen et al., 2010). Compared with commercially available polyester and poly(L-
lactide) (PLA), Aca-DEX nanofiber produced by electrospray gave a faster steady-state doxorubicin 
(DXR) release. Mice treated with DXR-loaded Aca-DEX resulted in 57% long-term survival (120 days) 
compared to 20% survival, following treatment with DXR-loaded PLA (Yoo et al., 2018). To increase 
recognition and subsequent stimulatory effects of toll-like receptor, imiquimod was encapsulated in 
Aca-DEX microparticles, and rapidly released under acidic lysosomal vesicles. This system is a potent 
delivery platform for vaccine adjuvants (Bachelder et al., 2010). Aca-DEX nanoparticles, loaded with 
paclitaxel (PTX), gave sustained release of drug against traumatic spinal cord injury (W. Liu, Quan, et 
al., 2018). Aca-DEX/camptothecin porous microparticles were prepared via a double emulsion 
water/oil/water (w/o/w) evaporation method. The tuned particle shape minimized macrophage 
clearance, favoring lung penetration to deliver the drug to the pulmonary cavity (Meenach et al., 2012). 
A phenyl acetalated dextran derivative was synthesized and the resulted nanoparticle used as image 
guided siRNA carrier for cyclooxygenase-2 (COX-2) down regulation. Potential application against auto-
immune diseases, gastric inflammation and cancer were suggested (Z. Chen, Krishnamachary, Penet, 
& Bhujwalla, 2018).   
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Figure 6: Cartoon depiction of the most common dextran modifications. 

Amphiphilic dextran derivatives 11 can be prepared by grafting hydrophobic side chains on the 
backbone hydroxyl groups  (Raemdonck, Demeester, & De Smedt, 2009). Several examples were 
prepared through esterification with stearic acid (SA) and cholesterol (Chol) and used as carriers to 
encapsulate rapamycin, a hydrophobic cancer drug. Generally, the particle size increases with 
increasing particle hydrophilicity (Shaki, Ganji, Kempen, Dolatshahi-Pirouz, & Vasheghani-Farahani, 
2018). A dextran based multidrug carrier was developed by adding 3-pentadecylphenol to the dextran 
side chains. The nano-vesicle can carry, at the same time, the hydrophobic drug camptothecin (CPT) 
and the hydrophilic drug doxorubicin (DOX), thus improving their synergistic killing of breast and colon 
cancer cells. This system released its cargo in response to the esterase assisted cleavage in the cell 
(Pramod, Shah, Chaphekar, Balasubramanian, & Jayakannan, 2014). Monodisperse nanogels were 
obtained through the self-assembly of amphiphilic poly (D-/L-lactide)-grafted dextran (Nagahama, 
Mori, Ohya, & Ouchi, 2007). Nanogels composed of dextran and oligolactide (OLA) chains connected 
via disulfide bonds (Dex-g-SS-OLA) were developed as responsive systems to the reductive cytosol 
environment, to achieve efficient drug delivery. The addition of galactose (Gal) residues on the nanogel 
enhanced cellular uptake, by receptor-mediated endocytosis. Further addition of a secondary oligo-
amine (tetraethylenepentamine) group promote the escape from the endosomes, acting as a proton 
sponge (Ohya, Takahashi, & Kuzuya, 2018). Supramolecular hydrogels were prepared though the 
formation of an inclusion complex between poly(ethylene glycol) grafted dextran and α-cyclodextrins 
(α-CDs). Interestingly, the complexes showed a unique reversible gel-sol phase transition with 
hysteresis (Huh et al., 2001). A boronate-linked dextran/cholesterol nanoassembly was prepared for 
nuclear drug translocation and improved the drug efficacy, as shown with doxorubicin (J.-Y. Zhu et al., 
2015). Other cancer targeted drug delivery systems were obtained with translocator protein (TSPO) 
ligand-dextran conjugates (TSPO-Dex) that formed tightly aggregated particles, with a spherical or rod-
like shape (Lopalco et al., 2018). A dextran–platinum (IV) conjugate nanoparticle was used to deliver 
DOX in a reduction-responsive manner. The collapse of the assembly, due to the reduction of platinum 
(IV) by glutathione (GSH), triggered the release of DOX. The presence of DOX and Pt(II) was found to 
be very effective for antitumor therapy (He et al., 2015).  
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Natural dextran can be oxidized with peroxide or periodate, forming a dialdehyde structure. This 
modification can be used as handle to form Schiff base linkages 13. Different amine bearing drugs, such 
as DOX, can be attached to the dextran nanoparticles and released at low pH, due to the lability of the 
Schiff linkage (Wasiak et al., 2016). Amphiphilic dextran derivatives, synthesized from oxidized dextran 
and stearic acid (SA) using different diamines, self-assemble into core–shell micelles. Curcumin was 
selected as a model drug to show that these dextran carriers have excellent drug loading capacity and 
drug encapsulation efficiency (Chai et al., 2017). 

Hydrophilic modification of dextran with charged functional groups, such as negative carboxylic or 
sulfuric acids or positive amino groups, can be easily obtained. A dextran sulfate (DS)-based drug 
delivery system for controlled and sustained release of DOX was developed. This DS-DOX complexes 
can be further encapsulated into injectable agarose hydrogels and achieve sustained local delivery of 
low-dose DOX against breast cancer (Niu, Zhang, & Zhong, 2017). With dextran sulfate 15 as the 
backbone and 5β-cholanic acid, spherical nanoparticles were developed as carrier for methotrexate 
(MTX) against rheumatoid arthritis (Heo et al., 2017). Interestingly, dextran sulfate was also found to 
stabilize the positively charged liposome (Cámara, Lurgo, Fanani, & Wilke, 2018). A carboxymethyl 
dextran 14 hydrogel with porous morphology showed responsiveness to pH and ionic strength of the 
medium. The diffusion rates of proteins through the hydrogel increased with pH, since repulsion of 
ionized carboxyl groups enlarge the porous gel structure (Rhongsheng Zhang, Tang, Bowyer, Eisenthal, 
& Hubble, 2005). A novel, pH-responsive micelle, composed of dextran and poly(oleic acid) side chain 
was synthesized for oral delivery of nifedipine. The system presents a spherical morphology at critical 
micelle concentration, and a rod-like assembly beyond that concentration (Karmakar et al., 2018). The 
modification of dextran with amino groups provides a polycationic biocompatible material especially 
suitable for gene delivery (Azzam, Eliyahu, Makovitzki, & Domb, 2003), as exemplified by the  
poly(ethylene imine) (lPEI) grafted onto dextran. An acid-sensitive, biocompatible, microparticulate 
system based on spermine grafted acetalated-dextran was prepared for siRNA delivery, and achieved 
efficient gene knock down in HeLa-luc cells with minimal toxicity (J. L. Cohen et al., 2011). Additional 
spermine grafted acetalated dextran-functionalized nanoparticles were developed for dual-drug 
delivery and targeting of cardiac fibroblasts for cellular reprogramming (M. P. Ferreira et al., 2018). A 
combination of histidine grafted dextran (Dex-His) and dextran-stearic acid (Dex-SA) was used to 
construct nano-micelles, to responsively deliver DOX to cancer cells (Jafarzadeh-Holagh, Hashemi-
Najafabadi, Shaki, & Vasheghani-Farahani, 2018). A hydrogel based on oxidized dextran and epsilon-
poly(L-lysine) showed good adhesive strength against collagen sheets, extending the scope of dextran-
based materials to tissue engineering applications (Hyon, Nakajima, Sugai, & Matsumura, 2014). 
Several systems assembled from two opposite-charged dextran derivatives exist. Hollow nanospheres 
were prepared from the negatively charged acetic acid grafted on dextran (Dex–CA) 14 and the 
positively charged ethylamine dextran derivative (Dex–BH) 12. At pH 5.0, the two components self-
assembled into well-defined nanospheres or tubular structures (G. Sun & Chu, 2009). An albumin 
release study indicates their potential as drug delivery vehicles (G. Sun & Chu, 2011). 

Other polymeric backbones crosslinked with dextran 16 also found several applications for drug 
delivery and tissue engineering. The common strategy is to graft a monomer, such as methacrylate, on 
the dextran backbone, and perform the polymerization to obtain the crosslinked hydrogel or 
nanostructures (L. Ferreira, Gil, & Dordick, 2002; Lévesque, Lim, & Shoichet, 2005; G. Sun et al., 2011; 
T. Wang, Nie, & Yang, 2012; Wei et al., 2017). These strategies can enable further expand the structure 
and applications of dextran nanomaterials, since the crosslinked material properties are largely 
affected by the polymer backbones. 
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Other neutral polysaccharides 

Other neutral polysaccharides based on different sugar monomers and glycosidic linkages have been 
studied. Starch, a storage copolymer based on multiple glucose units, is composed of amylose and 
amylopectin. Amylose is a poly α-(1-4)-glucoside with a helical three-dimensional structure that can 
encapsulate hydrophobic molecules in the inner cavity of the helix that in turn stabilizes the helix. 
Therefore, amylose has been employed for the controlled drug release (Gao et al., 2017; L. Zhang et 
al., 2016). Amylopectin, glycogen, and pullulan, are branched polyglucosides based on both α-(1-4) and 
α-(1-6) linkages. They originated from plant, animal and microbial sources, respectively, and have been 
widely modified for pharmaceutical purposes (Gopinath et al., 2018). Among them, the use of pullulan 
for drug delivery and tissue engineering has been broadly studied (Singh, Kaur, & Kennedy, 2015; Singh, 
Kaur, Rana, & Kennedy, 2016). Several modification strategies such as oxidation, esterification, 
etherification, carboxymethylation, hydroxypropylation, and hydroxyethylation have been used to 
tune polysaccharide properties (H. Hu, Li, et al., 2016; D. Li, Feng, Chen, Ding, & Chen, 2018; Masina et 
al., 2017; Tan et al., 2018). The natural polysaccharide dendrimer, glycogen, was studied as a 
mucoadhesive drug delivery carrier (Perrone, Lopalco, et al., 2017; Perrone, Lopedota, et al., 2017).  

Besides glucose, sugar monomers like mannose, galactose, and arabinose are part of other classes of 
polysaccharides. Of particular relevance, hemicelluloses, composed of xylan and arabinoxylan, inulin, 
guar gum and locust bean gum have been exploited as a theradiagnostic tool (Braz et al., 2018; George, 
Shah, & Shrivastav, 2018; W.-Q. Kong et al., 2017; W. Kong et al., 2018; Mandracchia et al., 2017; 
Petzold-Welcke, Schwikal, Daus, & Heinze, 2014; Rosselgong et al., 2018). Xylan/Polyvinyl alcohol 
nanofibers prepared by electrospinning possess interesting mechanical and rheological properties. 
This system was used to improve cardiac cell proliferation for the treatment of myocardial infarction 
(Soumya, Sajesh, Jayakumar, Nair, & Chennazhi, 2012). Inulin-peptide conjugates self-assembled into 
micelles, that in response to inulinase, can degrade and release ornidazole, a drug for colon cancer and 
gastrointestinal disease (Shivhare et al., 2018). The mannose-rich guar gum possess extraordinary 
mucoadhesive properties and is used in combination with chitosan to form crosslinked hydrogels that 
serve as transdermal patches for sustained drug-release (Sami et al., 2018).      

Charged polysaccharides 

Chitosan 

Chitin, poly β-(1-4)-N-acetylglucosamine, is the second most abundant polysaccharide in nature, 
mainly constructing exoskeleton of crustaceans, insects, and fungal cell wall. Despite of superior 
biocompatibility, biodegradability, and physical stability, chitin has been studied rarely for biomedical 
applications due to water insolubility. To overcome this drawback, chitin is treated with concentrated 
sodium hydroxide or chitin deacetylase to obtain chitosan, its partially deacetylated derivative (Figure 
7). Chitosan is most important derivative of chitin, generally with a degree of acetylation (DA) lower 
than 50%. The DA, distribution of amine and acetylamine groups, and molecular weight determines 
solubility and biological activity of chitosan (Aranaz et al., 2014).  
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Figure 7: Chitin and its deacetylated analogue chitosan. 

Similarly to cellulose, chitin forms strong inter- and intramolecular hydrogen bonds, which hamper its 
use. In addition, chitin possesses a fibril structure that cannot be solubilized in most organic solvents. 
Complex solvent mixtures, such as CaCl2∙2H2O saturated methanol, litium chloride/N,N-
dimethylacetamide (LiCl/DMAc),  NaOH/urea, hexafluoroisopropyl alcohol (HFIP), and ionic liquid are 
employed to disrupt the dense hydrogen bond network of chitin (Ifuku, 2014; Silva, Mano, & Reis, 
2017). Ultrafine nanofibers can be obtained by simple solvent evaporation from HFIP solutions or from 
precipitation induced by addition of water to a LiCl/DMAc solution. These nanofibers are important 
materials for tissue engineering, as confirmed by in vitro cell cytotoxicity and cell proliferation (Zhong 
et al., 2010). The chitin fibers prepared with HFIP were incorporated in gelatin methacryloyl, forming 
a ultrastrong and flexible hydrogel applicable in vascular tissue engineering (Hassanzadeh et al., 2016). 
Chitin solution in CaCl2∙2H2O saturated methanol forms colloidal nanogels, upon addition of excess 
methanol (Priya, Sabitha, & Jayakumar, 2016). Chitin in NaOH/urea rapidly aggregated into 
nanofibrous microsphere with high cellular affinity (Duan et al., 2015).  

Chitin has been chemically modified to obtain carboxymethyl chitin, glycol chitin, fluorinated chitin, 
and N- and O- sulfated chitin. All these modifications aim to improve the water solubility and 
mechanical properties of natural chitin (Rinaudo, 2006). The carboxymethyl chitin formed nanofiber 
with poly(vinyl alcohol) via electrospinning (Shalumon et al., 2009). The glycol chitin can easily 
generate thermosensitive hydrogels in PBS solution (Zhengzheng Li, Cho, Kwon, Janát-Amsbury, & Huh, 
2013). Like cellulose, chitin nanofibrils and nanowhiskers have attracted great attention as drug 
delivery scaffolds (Morganti et al., 2014; Ou, Zheng, Zhao, & Liu, 2018). The most used chitin derivative 
is chitosan.  As the only positively charged natural polysaccharide, chitosan has raised particular 
interest in biomedical nanotechnology. The positive charge provides antimicrobial, antibacterial, and 
anticoagulation properties and accelerates wound healing. The amino groups, that can be protonated 
in acidic conditions, permit to solubilize chitosan. Moreover, pH-responsive systems can be easily 
created. Mucoadhesive properties and cell permeability are the most important features of this 
material, enhancing topical, ocular, nasal, and transdermal drug delivery efficiency. The positive charge 
allows for the adhesion of chitosan-materials to the highly negative mucous environment, through 
electrostatic interactions. Moreover, the interaction of chitosan with the negatively charged cell wall 
disrupts the phospholipid alignment and promotes cell penetration (Hamedi, Moradi, Hudson, & 
Tonelli, 2018; Lin et al., 2018; M Ways, Lau, & Khutoryanskiy, 2018). 
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Figure 8: Chitosan nanoparticles for insulin delivery. (A) pH-responsive nanoparticles shield with 
chitosan for oral delivery (Reprinted with permission from H. Sung et al. (2012). Copyright 2012 
American Chemical Society). (B) Multilayered nanoparticles (left) and vesicles (right) encapsulating 
insulin with coassembly of chitosan and lecithin (Reprinted with permission from L. Liu et al. (2016). 
Copyright 2016 Dove Medical Press Limited). 

The positively charged chitosan was co-assembled with negatively charged compounds, to afford 
different types of carrier systems (Quiñones, Peniche, & Peniche, 2018). Co-assembly with negatively 
charged polymers, proteins, and polysaccharides has been tremendously exploited for the formation 
of drug delivery carriers, especially employed for insulin delivery (L. Liu, Zhou, Xia, & Liu, 2016; Maciel, 
Yoshida, Pereira, Goycoolea, & Franco, 2017; Sung, Sonaje, Liao, Hsu, & Chuang, 2012; T. Wang, Hou, 
Su, Zhao, & Shi, 2017; B. Xu et al., 2017)(Figure 8). A layer-by-layer approach, adding repetitively layers 
of opposite charged compounds one by one, permitted the formation of new materials (L. Li, Wang, et 
al., 2018).  

Countless modifications have been introduced for cell targeting, stimuli responsiveness, and water 
solubility at neutral pH (C.-H. Chen, Lin, Wu, & Mi, 2018; de Oliveira Pedro, Goycoolea, Pereira, Schmitt, 
& Neumann, 2018; Lai & Shum, 2015; B. Xu et al., 2017; T. Xu, Xu, Gu, Fang, & Cao, 2018). Chitosan 
amphiphiles have been prepared by grafting hydrophilic and hydrophobic moieties onto the sugar 
backbone (J.-Y. Lee, Termsarasab, et al., 2017). Both the amine and/or the hydroxyl groups can be used 
to functionalize chitosan (Sahariah & Másson, 2017). Three main strategies are used for chitosan 
functionalization: sulfaltion/sulfonation, amine quaternization, and carboxymethylation. Among 
them, carboxymethyl chitosan (CMCS), an amphiprotic biopolymer possessing both amine and 
carboxyl groups, may be the most promising biomedical material with outstanding chemical, physical 
and biological features. Different types of CMCS such as N-CMCS, O-CMCS, N,N-CMCS, and N,O-CMCS 
are based on different substitution patterns. Each CMCS shows different water solubility and biological 
activity depending on the degree of carboxymethylation (Upadhyaya, Singh, Agarwal, & Tewari, 2014). 
CMCS can be assembled into nanoparticles and hydrogels exploiting electrostatic interactions (Al-
Rashida, Haider, Kortz, Joshi, & Iqbal, 2018; Song et al., 2018). In particular, self-healing metal 
crosslinked CMCS hydrogels with high antibacterial activity can be used for tissue engineering and 
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wound healing (Wahid et al., 2018). Several reviews provide a more detailed description of this topic 
(Shariatinia, 2018; Upadhyaya, Singh, Agarwal, & Tewari, 2014).  

Quaternized chitosan (QCS) in obtained by alkylation of the amines and/or grafting of quaternary 
ammonium groups to the hydroxyl groups. This functionalization results in permanent positive 
charges, independent from the pH. N,N,N-trimethyl chitosan chloride (TMCS) was the first chitosan 
derivative bearing  N-quaternized sites, showing interesting mucoadhesive properties (A. Martins et 
al., 2014). A TMCS nanoemulsion with dextran sulfate, prepared by hot high-pressure homogenization, 
successfully delivered a Parkinson’s disease drug through the nasal mucosa (Pardeshi & Belgamwar, 
2018). TMCS can be additionally transformed to amphiphiles via N- and O-hydroxyalkylation. O-Alkyl 
TMCS nanomicelles, encapsulating peptide nucleic acid showed hemocompatability and a dramatic 
increase in cellular uptake (C. Liu, Wang, et al., 2018). Other types of QCS served as pH responsive 
nanocarriers (de Oliveira Pedro, Hoffmann, et al., 2018; Piras et al., 2018). 

Sulfated and/or sulfonated chitosan (SCS) are heparin-like polysaccharides, mainly used for 
vascularization and bone tissue regeneration (Dimassi, Tabary, Chai, Blanchemain, & Martel, 2018). 
Implants made of 2-N,6-O-sulfated chitosan based nanoparticles improved angiogenesis and bone 
formation with a rich vessel network (Cao, Wang, Hou, Xing, & Liu, 2014). The same compound was 
used as a coating material for better blood circulation, constructing hierarchical structure with PLGA 
microsphere (Y. Yu et al., 2015). Glycyrrhetinic acid, a hydrophobic liver-targeting ligand, was attached 
to SCS and the resulting amphiphile was able to carry doxorubicin and suppress liver cancer (Tian et 
al., 2012).  

Glycosaminoglycans 

Glycosaminoglycans (GAGs) are large linear polysaccharides composed of a repeating disaccharide unit 
(usually an amino sugar and an uronic sugar) (Figure 9). The most common GAGs are hyaluronic acid 
or hyaluronan 17, chondroitin sulfate 18, dermatan sulfate 19, keratan sulfate 20, heparin and heparan 
sulfate 21. Except for hyaluronic acid, the amino and/or hydroxyl groups of GAGs are modified with N-
/O-sulfation, making the whole structure highly hydrophilic and negatively charged (Esko, Kimata, & 
Lindahl, 2009). GAGs are widely present on the mammalian cell surface as well as in the extracellular 
matrix. For this reason, GAGs are popular materials for biomedical studies, as drugs or carriers in drug 
delivery systems (Fu, Suflita, & Linhardt, 2016; G. Huang & Huang, 2018; Köwitsch, Zhou, & Groth, 
2018; Rnjak-Kovacina, Tang, Whitelock, & Lord, 2018; Rodriguez-Torres, Acosta-Torres, & Diaz-Torres, 
2018).  
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17. Hyaluronic acid (HA) 18. Chondroitin sulfate (ChS)

19. Dermatan sulfate (DS) 20. Keratan sulfate  (KS)

21. Heparan sulfate/ Heparin (HS)
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Figure 9: Structures of most common GAGs. 

Unlike other polysaccharides, natural GAGs are highly charged, so they can directly serve as carriers 
for a verity of drugs, without further chemical modifications. Hyaluronic acid (HA)-based doxorubicin 
(DOX) delivery systems were fabricated through ion-interaction. Spherical nanoparticles (HA-NPs) 
were prepared from DOX and HA and further assembled into liposomal carriers with lipoid E80 and 
cholesterol, for CD44+ tumor-targeted delivery (W. Li, Yi, et al., 2016). Chondroitin sulfate (ChS)-nisin 
nanogel was prepared with different loading and morphology by electrostatic complexation 
(Mohtashamian, Boddohi, & Hosseinkhani, 2018). Low molecular weight heparin-lappaconitine 
(LMWH-LA) delivery system was prepared through self-assembly, affording a pH-sensitive drug release 
(W. Sun et al., 2016). GAGs were co-assembled with positively charged proteins or polysaccharides (e.g 
chitosan), for clinical applications. Particularly relevant examples are hydrogels with tunable 
mechanical properties for cell therapy and tissue engineering (Alinejad, Adoungotchodo, Hui, Zehtabi, 
& Lerouge, 2018), nanoparticles loading doxorubicin for anti-tumor therapy (C.-S. Hu, Tang, Chiang, et 
al., 2014), nanoparticles for ocular delivery of bromfenac sodium (Abdullah, Ibrahim, & Warsi, 2016), 
pH responsible hydrogels for theophylline delivery (Lopes, Fajardo, Piai, Rubira, & Muniz, 2013), and 
protein-loaded nanoparticles (Yeh, Cheng, Hu, Huang, & Young, 2011).  

The highly hydrophilic GAGs can be chemically modified with hydrophobic functionalities to create 
amphiphilic structures, expanding the horizons of GAG nanomaterials (Figure 10). Acetylated 
chondroitin sulfate, with a high degree of substitution, forms nanogels for DOX delivery (W. Park, Park, 
& Na, 2010). Hydrophobic modifications on hyaluronic acid greatly affected its self-assembly manners 
as shown for the octadecylamine-modified HA that formed well-defined hydrophobic domains in its 
supramolecular structure (Payne, Svechkarev, Kyrychenko, & Mohs, 2018). Oleyl hyaluronan carriers 
were designed for good skin penetration and large drug deposition in the dermis (Šmejkalová et al., 
2017). Amphiphilic nanoparticles, with negatively charged surface, were prepared with a hyaluronic 
acid–decylamine (HA–DA) conjugates. This system can encapsulate budesonide (BDS) to treat the 
inflamed intestinal mucosa (Vafaei et al., 2016). Nanomicelles synthesized from hyaluronic acid, 
ethylenediamine (EDA), hexadecyl chains, polyethylene glycol (PEG), or L-carnitine (CRN) can be used 



 

 
  

 

M
ax

 P
la

nc
k 

In
st

itu
te

 o
f C

ol
lo

id
s a

nd
 In

te
rfa

ce
s ·

 A
ut

ho
r M

an
us

cr
ip

t 

as imatinib carriers, promoting transcorneal permeation (Bongiovì et al., 2018). Nanocarrier based on 
α-linolenic acid (αLNA)-grafted hyaluronan (HA) served to deliver hydrophobic drugs (Huerta-Angeles 
et al., 2016). In the same way, amphiphilic hyaluronan modified with ω-phenylalkanoic ester showed 
potential applications for resveratrol and retinyl palmitate delivery (Matelová et al., 2016). Systems 
based on GAG/poly (D, L-lactide-co-glycolide) were also employed for photodynamic therapy (Xiaoling 
Wang et al., 2018) and doxorubicin delivery (Hui Zhang et al., 2017). Several linkages were used for the 
amphiphilic functionalization. Spherical hyaluronic acid-doxorubicin particles, connected though 
hydrazone linkages (HA-hyd-DOX), were designed for acid-triggered release of doxorubicin (Liao et al., 
2018). Fluorescein delivery systems, ChS-fluorescein-5-thiosemicarbazide (FTSC) were achieved by 
carbodiimide chemistry (Varghese, Liu, Sundaram, Hilborn, & Oommen, 2016). HA-riboflavin (Rfv) 
delivery system was synthesized by click chemistry and used for the delivery of hydrophobic drugs such 
as dexamethasone, piroxicam and paclitaxel (Manzi et al., 2017). Chondroitin sulfate, directly linked 
with methotrexate (MTX), afforded a ChS nanogels with increased solubility and improved the delivery 
efficacy of MTX (J. Wang, Zhao, Chen, Qin, & Zhu, 2017). Dihydroxyflavone-conjugated hyaluronic acid 
nanogels were prepared and tested for cellular uptake and antitumoral efficiency. The smaller 
nanogels were taken up by two kinds of tumor cells (HeLa and HepG2) (Choi et al., 2018). Adamantane-
grafted hyaluronic acid can work as carrier for methyl-β-cyclodextrin through supramolecular assembly 
and proved to be a potential antitumor agent (Elamin, Yamashita, Higashi, Motoyama, & Arima, 2018). 

 

Figure 10: GAGs-based materials and their biomedical applications. 

A common functionalization of GAGs is the introduction of disulfide bonds to prepare amphiphilic 
delivery systems with good biocompatibility and redox-responsive properties (Griesser, Hetényi, & 
Bernkop-Schnürch, 2018). The conjugation of thiolated hydrophobic molecules to the HA side chain 
resulted in the formation of nanogels with good immunocompatibility and hemocompatibility 
(Pedrosa et al., 2016). Fluorescent hyaluronic acid-iodixanol nanogels (HAI-NGs) were used for 
targeted X-ray computed tomography (CT) imaging and chemotherapy (Y. Zhu et al., 2016). 
Nanomicelles with hyaluronic acid shell with disulfide-crosslinking were used for the treatment of 
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multiple myeloma (Gu, Wang, Cheng, Cheng, & Zhong, 2018). Several pH- and GSH-dual-sensitive 
polymeric conjugate were developed to deliver DOX (Debele, Yu, Yang, Shen, & Lo, 2018; Yin et al., 
2018). Redox-sensitive nanoparticles based on heparin-α-tocopherol succinate (Hep-cys-TOS), formed 
nanoparticles used as carrier for paclitaxel (PTX) (Yang, Cai, Yu, Xi, & Zhai, 2017).  

Steroids (or derivatives) with hydrophobic fused ring systems, such as deoxycholic acid (DOCA), 
cholesterol, and glycyrrhetinic acid (GA), are widely used to fabricate amphiphilic GAG nanostructures. 
Reduction-sensitive micelles with disulfide linked GAG-DOCA structures were designed for triggered 
release of DOX (Yang et al., 2017) or docetaxel for the inhibition of metastasis and growth of melanoma 
(M. Liu, Du, et al., 2018). Spherical micelles with tunable size (124–237 nm) and redox-responsive 
properties were prepared from amphiphilic chondroitin sulfate-cholesterol conjugates and used as 
carriers for hydrophobic drugs (C. Yu et al., 2013). DOCA-heparin based micelles, with the pH-sensitive 
hydrazone bond between DOCA and DOX, enabled both antitumor and antimetastasis activities as well 
as drug delivery (Mei et al., 2016). Similar systems based on GAG/DOCA were developed in recent 
years: ChS-DOCA nanoparticles for DOX delivery (J.-Y. Lee, Chung, Cho, & Kim, 2015a), HA-DOCA-
histidine micelles for intracellular paclitaxel (PTX) delivery (Yanhua Liu, Zhou, Wang, et al., 2016), 
phenylboronic acid-decorated ChS-DOCA system for DOX delivery (J. Y. Lee, Chung, Cho, & Kim, 2015b), 
ChS-DOCA/DOX nanoparticle for the therapy of CD44 receptor-expressing ovarian cancers (J.-Y. Lee et 
al., 2016), ChS-DOCA conjugates for docetaxel delivery (M. Liu, Du, & Zhai, 2016).   

Even though GAGs are highly negatively charged, several examples of functionalization with charged 
moieties are reported.  An iRGD-heparin nanocarrier was synthesized by coupling the heparin 
backbone with N-end cysteine peptide tumor-homing peptide iRGD. The system can be used as carrier 
for cis-diamminedichloroplatinum (II) delivery (Ai et al., 2018). A similar heparin-based drug delivery 
system was prepared by heparin-cis aconitic anhydride ligation. Paclitaxel (PTX) was grafted to the 
hydroxyl of heparin via an aconitic bond and served as pH sensitive spacer. Positively charged DOX and 
cationic folic acid (CFA) can be further loaded into the system via electrostatic interaction (Q. Li, Gan, 
et al., 2016). The amphiphilic chondroitin sulfate-histamine conjugate (ChS-his) can be synthesized and 
assembled into nanoparticles in aqueous medium and served as pH-sensitive carrier for DOX (C. Yu et 
al., 2014). Similarly, hybrid nanoparticles based on hyaluronic acid and poly (L-histidine) were used for 
diagnostic and therapeutic applications (S.-J. Lee & Jeong, 2018).  

Chemically and physically crosslinked GAGs possess unique properties in terms of biodegradation and 
biocompatibility. These features were used to form cell scaffolds, drug delivery systems, and for wound 
healing (Khunmanee, Jeong, & Park, 2017). In addition, GAG-based hydrogels offer interesting 
possibilities for bioprinting (Martini et al., 2016). An injectable ionically cross-linked hydrogel was 
prepared via introduction of alginate to hyaluronate backbones, followed by addition of calcium ions. 
The gel proved effective in regenerating cartilage in a mouse model (H. Park, Woo, & Lee, 2014). The 
N, O-carboxymethyl chitosan/fucoidan conjugate formed a three-dimensional hydrogel based on 
interconnected macropores, for bone tissue engineering (Lu, Lu, Chen, Lu, & Mi, 2018). Other 
crosslinking methods for GAGs, such as urea-crosslinked HA systems (Fallacara et al., 2018), 
poly(ethylene glycol) crosslinked systems (Luo, Kirker, & Prestwich, 2000; Shu, Liu, Palumbo, Luo, & 
Prestwich, 2004), tyramine (TA) modified HA and ChS systems (Ni et al., 2015) were also developed. 

Other charged polysaccharides 

In addition to the examples discussed above, several other polysaccharides are commonly used for 
biomedical materials development. Many of these polysaccharides are charged, highly hydrophilic 
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glycans (Abedini, Ebrahimi, Roozbehani, Domb, & Hosseinkhani, 2018). In particular, several marine 
polysaccharides are extracted and used for drug delivery applications (Cardoso, Costa, & Mano, 2016). 
Carrageenan (CRG) is a highly sulphated linear polygalactan derivative with α-D-galactose and β-
1,4/3,6-anhydro-galactose produced by rhodophyceae. Six classes of carrageenans, named Kappa (κ)-
, Iota(ɩ)-, Lambda (λ)-, Mu (μ)-, Nu (ν)- and Theta (θ), exist based on their different structures (Cunha 
& Grenha, 2016). CRG hydrogels are popular choices for drug delivery, tissue engineering and wound 
healing (Yegappan, Selvaprithiviraj, Amirthalingam, & Jayakumar, 2018). The preparation of 
microspherical κ-carrageenan gel particles, using emulsion technology, affects the final aerogel 
properties (Alnaief, Obaidat, & Mashaqbeh, 2018; Obaidat, Alnaief, & Mashaqbeh, 2018). κCRG-based 
drug carriers were developed (Obaidat et al., 2018; Sathuvan et al., 2017). Carboxymethylated ɩ-
carrageenan was chosen to deliver amphotericin B against the intracellular Candida glabrata infections 
(Aparna et al., 2018). Moreover, the combination of CRG with other polysaccharides was exploited for 
biomedical applications. Relevant examples are the cross-linked starch-κ-carrageenan hydrogel for 
extended release of zaltoprofen (Sonawane & Patil, 2018), the glucan/carrageenan hydrogels for 
wound healing (Nair, Raman, & Doble, 2016), and the κ-carrageenan/chitosan nanosystems for drug 
delivery (Amarnath Praphakar et al., 2017; Karimi, Mahdavinia, & Massoumi, 2018; Mahdavinia, 
Mosallanezhad, Soleymani, & Sabzi, 2017; Rochín-Wong et al., 2018).  

Alginate (alginic acid) is a linear polysaccharide consisting of D-mannuronic acid and L-guluronic acid 
units, isolated from phaeophyceae (Tønnesen & Karlsen, 2002), that was used the formation of several 
delivery systems. Moreover, injectable hydrogels of phosphorylated alginic acid-calcium complexes 
were developed for soft tissue engineering (H.-S. Kim, Song, Lee, & Shin, 2015). Cross-linked alginate 
provides additional options to construct nanocarriers with different functions. The hydrophobically 
modified alginic acid, crosslinked by 1,10-decanediol, was proven to be a good carrier for ibuprofen 
(M. Wu et al., 2013). Similarly, albumin-crosslinked alginate hydrogels were prepared to deliver 
positively charged drugs (Tada, Tanabe, Tachibana, & Yamauchi, 2007).  

Ulvan, a cell-wall polysaccharide from green seaweeds, is mainly composed of a disaccharide repeating 
unit of uronic acid (D-glucuronic or L-ioduronic) and L-rhamnose-3-sulfate (Morelli & Chiellini, 2010). 
Upon functionalization with methacryloyl moieties and photopolymerization, ulvan forms hydrogels 
used as matrix for cell encapsulation (Morelli & Chiellini, 2010). A similar strategy was used to produce 
thermosensitive hydrogels (Morelli, Betti, Puppi, & Chiellini, 2016) and scaffolds for bone tissue 
engineering (Dash et al., 2014). Lysozyme/ulvan complexes can be prepared through ionic interactions 
at physiological pH, showing good antibacterial activity (Tziveleka et al., 2018). Ulvan/chitosan systems 
were used as polymeric components of bone cements (Barros et al., 2013) and for the cultivation of 
osteoblasts (Toskas et al., 2012). 

Plants also contain numerous useful polysaccharides for pharmaceutical applications. Pectin is one of 
the most structural complicated polysaccharides in nature; it is rich in galacturonic acid and contains 
different rare sugar units (Caffall & Mohnen, 2009). Pectin is generally used in combination with other 
polysaccharides to produce materials for drug delivery. Bacterial cellulose–high methylated pectin 
films were developed to encapsulate and release biomacromolecules such as human serum albumin 
(Cacicedo et al., 2018). Alginate–pectin polymeric rafts showed pH-responsive property and showed 
potential for the treatment of gastro-esophageal reflux disorders (Hanif & Abbas, 2018). Chitosan, due 
to its negative charge, was also widely used to prepare different nanostructures, in combination with 
pectin. Relevant examples are micelles based on self-assembling chitosan cross-linked pectin–
doxorubicin conjugates (Z.-P. Li, Jiang, et al., 2018), pectin-chitosan membrane scaffolds for the 
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controlled stem cell adhesion and proliferation (J. G. Martins et al., 2018), and electrospun pectin-
oligochitosan nanofibers for tissue engineering (McCune et al., 2018).  

Gum arabic from the Acacia senegal and Acacia seyal trees is a branched heteropolysaccharide with a 
1, 3-linked β-D-galactopyranose backbone and L-arabinose, L-rhamnose, or D-glucuronic acid 
branching. It shows important biomedical properties, including antimicrobial, anti-inflammatory, and 
anticoagulant activity (Patel & Goyal, 2015). Alginate-gum arabic hydrogels, crosslinked with Ca2+, 
showed potential applications for wound healing (M. Li, Li, et al., 2017). Additionally, pH-sensitive 
delivery systems were obtained from the cross-linking of carboxymethyl chitosan–gum Arabic (G.-Q. 
Huang, Cheng, Xiao, Wang, & Han, 2016).  

Gellan gum is a bacterial extracellular polysaccharide secreted by Pseudomonas elodea, which contain 
a tetrasaccharide repeating unit with α-L-rhamnose, β-D-glucuronic acid, and two β-D-glucoses 
(Osmałek, Froelich, & Tasarek, 2014). It was used in ocular delivery systems (Paolicelli et al., 2018; J. 
Sun & Zhou, 2018), cutaneous delivery systems (Musazzi et al., 2018), and for antibiotic delivery during 
wound healing (Shukla & Shukla, 2018). Additionally, oxygen-producing biomaterials were developed 
based on gellan gum (Newland et al., 2017). Chitosan-gellan gum systems (S. Kumar, Kaur, Bernela, 
Rani, & Thakur, 2016), and pectin-gellan gum systems (Bera, Kumar, & Maiti, 2018; Fernandes, Fortes, 
da Cruz Fonseca, Breitkreutz, & Ferraz, 2018; Prezotti et al., 2018) are popular choices  for smart drug 
delivery systems. Xanthan gum is a microbial polysaccharide produced by Xanthomonas bacteria; it is 
negatively charged and widely used for tissue engineering (A. Kumar, Rao, & Han, 2018) and drug 
delivery (Salamanca, Yarce, Moreno, Prieto, & Recalde, 2018). Xanthan gum-chitosan nanofibers 
(Shekarforoush, Ajalloueian, Zeng, Mendes, & Chronakis, 2018), gellan-xanthan systems (Ramburrun, 
Kumar, Choonara, du Toit, & Pillay, 2017; Sehgal, Roohani-Esfahani, Zreiqat, & Banerjee, 2017), and -
xanthan gum hydrogels perform great in biomedical applications (Ruquan Zhang et al., 2018). 

Conclusion 

Due to their natural abundance and tendency to form supramolecular networks, carbohydrates are 
important substrates for biomedical applications. Several materials, based on simple monosaccharides 
or complex polymers have been synthesized. Tunable properties can be achieved through chemical 
modifications as well as assembly conditions. A plethora of morphologies, from spherical particles to 
nanogels, can be obtained. Due to their biocompatibility, those materials found several applications in 
drug delivery and tissue engineering. Recently, the attention has been directed to the formation of 
responsive drug delivery systems. Very stable assemblies have been developed, that are able to target 
particular cells and decompose in response to external stimuli, such as pH or salt concentration, to 
release the cargo. Similarly, the reversible association of carbohydrate-based nanomaterials is 
particularly useful for implants and tissue engineering. 

The variety of natural carbohydrates, from monosaccharides, to cyclic systems, as well as long charged 
or neutral polymers has given rise to a range of materials with tunable properties. Chemical 
modifications have further expanded the range of applications. Reproducibility is the main challenge 
in the carbohydrate materials field. Polysaccharides are generally extracted from natural sources, 
often in low purity and high polydispersity. Control on the degree of substitution and polymerization 
are serious challenges that have to be addressed, in order to achieve more reproducible results. 
Moreover, a deeper understanding of how to regioselectively modified natural polysaccharides is 
needed. Purely synthetic, well-defined systems are limited to mono- and disaccharides. With the 
development of synthetic techniques that allow for quick access to longer oligosaccharides, new 
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glycomaterials can be envisioned. Well-defined derivatives will help to establish the relationship 
between polysaccharide structure and its assembling behavior, opening the way to novel and 
reproducible biomedical applications.  
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